
17
SECURITY

I know that’s a secret, for it’s whispered everywhere.

—William Congreve

Database management systems are increasingly being used to store information about

all aspects of an enterprise. The data stored in a DBMS is often vital to the business

interests of the organization and is regarded as a corporate asset. In addition to

protecting the intrinsic value of the data, corporations must consider ways to ensure

privacy and to control access to data that must not be revealed to certain groups of

users for various reasons.

In this chapter we discuss the concepts underlying access control and security in a

DBMS. After introducing database security issues in Section 17.1, we consider two

distinct approaches, called discretionary and mandatory, to specifying and managing

access controls. An access control mechanism is a way to control the data that is

accessible to a given user. After introducing access controls in Section 17.2 we cover

discretionary access control, which is supported in SQL-92, in Section 17.3. We briefly

cover mandatory access control, which is not supported in SQL-92, in Section 17.4.

In Section 17.5 we discuss several additional aspects of security, such as security in a

statistical database, the role of the database administrator, and the use of techniques

such as encryption and audit trails.

17.1 INTRODUCTION TO DATABASE SECURITY

There are three main objectives to consider while designing a secure database appli-

cation:

1. Secrecy: Information should not be disclosed to unauthorized users. For example,

a student should not be allowed to examine other students’ grades.

2. Integrity: Only authorized users should be allowed to modify data. For example,

students may be allowed to see their grades, yet not allowed (obviously!) to modify

them.

3. Availability: Authorized users should not be denied access. For example, an

instructor who wishes to change a grade should be allowed to do so.

497

498 Chapter 17

To achieve these objectives, a clear and consistent security policy should be developed

to describe what security measures must be enforced. In particular, we must determine

what part of the data is to be protected and which users get access to which portions of

the data. Next, the security mechanisms of the underlying DBMS (and OS, as well

as external mechanisms such as securing access to buildings and so on) must be utilized

to enforce the policy. We emphasize that security measures must be taken at several

levels. Security leaks in the operating system or network connections can circumvent

database security mechanisms. For example, such leaks could allow an intruder to log

on as the database administrator with all the attendant DBMS access rights! Human

factors are another source of security leaks. For example, a user may choose a password

that is easy to guess, or a user who is authorized to see sensitive data may misuse it.

Such errors in fact account for a large percentage of security breaches. We will not

discuss these aspects of security despite their importance because they are not specific

to database management systems.

Views provide a valuable tool in enforcing security policies. The view mechanism can

be used to create a ‘window’ on a collection of data that is appropriate for some group

of users. Views allow us to limit access to sensitive data by providing access to a

restricted version (defined through a view) of that data, rather than to the data itself.

We use the following schemas in our examples:

Sailors(sid: integer, sname: string, rating: integer, age: real)

Boats(bid: integer, bname: string, color: string)

Reserves(sname: string, bid: integer, day: dates)

Notice that Reserves has been modified to use sname, rather than sid.

17.2 ACCESS CONTROL

A database for an enterprise contains a great deal of information and usually has several

groups of users. Most users need to access only a small part of the database to carry

out their tasks. Allowing users unrestricted access to all the data can be undesirable,

and a DBMS should provide mechanisms to control access to data.

A DBMS offers two main approaches to access control. Discretionary access control

is based on the concept of access rights, or privileges, and mechanisms for giving

users such privileges. A privilege allows a user to access some data object in a certain

manner (e.g., to read or to modify). A user who creates a database object such as

a table or a view automatically gets all applicable privileges on that object. The

DBMS subsequently keeps track of how these privileges are granted to other users,

and possibly revoked, and ensures that at all times only users with the necessary

privileges can access an object. SQL-92 supports discretionary access control through

Security 499

the GRANT and REVOKE commands. The GRANT command gives privileges to users, and

the REVOKE command takes away privileges. We discuss discretionary access control

in Section 17.3.

Discretionary access control mechanisms, while generally effective, have certain weak-

nesses. In particular, a devious unauthorized user can trick an authorized user into

disclosing sensitive data. Mandatory access control is based on systemwide policies

that cannot be changed by individual users. In this approach each database object is

assigned a security class, each user is assigned clearance for a security class, and rules

are imposed on reading and writing of database objects by users. The DBMS deter-

mines whether a given user can read or write a given object based on certain rules that

involve the security level of the object and the clearance of the user. These rules seek

to ensure that sensitive data can never be ‘passed on’ to a user without the necessary

clearance. The SQL-92 standard does not include any support for mandatory access

control. We discuss mandatory access control in Section 17.4.

17.3 DISCRETIONARY ACCESS CONTROL

SQL-92 supports discretionary access control through the GRANT and REVOKE com-

mands. The GRANT command gives users privileges to base tables and views. The

syntax of this command is as follows:

GRANT privileges ON object TO users [WITH GRANT OPTION]

For our purposes object is either a base table or a view. SQL recognizes certain other

kinds of objects, but we will not discuss them. Several privileges can be specified,

including these:

SELECT: The right to access (read) all columns of the table specified as the object,

including columns added later through ALTER TABLE commands.

INSERT(column-name): The right to insert rows with (non-null or nondefault)

values in the named column of the table named as object. If this right is to be

granted with respect to all columns, including columns that might be added later,

we can simply use INSERT. The privileges UPDATE(column-name) and UPDATE are

similar.

DELETE: The right to delete rows from the table named as object.

REFERENCES(column-name): The right to define foreign keys (in other tables) that

refer to the specified column of the table object. REFERENCES without a column

name specified denotes this right with respect to all columns, including any that

are added later.

500 Chapter 17

If a user has a privilege with the grant option, he or she can pass it to another user

(with or without the grant option) by using the GRANT command. A user who creates

a base table automatically has all applicable privileges on it, along with the right to

grant these privileges to other users. A user who creates a view has precisely those

privileges on the view that he or she has on every one of the view or base tables used

to define the view. The user creating the view must have the SELECT privilege on

each underlying table, of course, and so is always granted the SELECT privilege on the

view. The creator of the view has the SELECT privilege with the grant option only if

he or she has the SELECT privilege with the grant option on every underlying table.

In addition, if the view is updatable and the user holds INSERT, DELETE, or UPDATE

privileges (with or without the grant option) on the (single) underlying table, the user

automatically gets the same privileges on the view.

Only the owner of a schema can execute the data definition statements CREATE, ALTER,

and DROP on that schema. The right to execute these statements cannot be granted or

revoked.

In conjunction with the GRANT and REVOKE commands, views are an important com-

ponent of the security mechanisms provided by a relational DBMS. By defining views

on the base tables, we can present needed information to a user while hiding other

information that the user should not be given access to. For example, consider the

following view definition:

CREATE VIEW ActiveSailors (name, age, day)

AS SELECT S.sname, S.age, R.day

FROM Sailors S, Reserves R

WHERE S.sname = R.sname AND S.rating > 6

A user who can access ActiveSailors, but not Sailors or Reserves, knows which sailors

have reservations but cannot find out the bids of boats reserved by a given sailor.

Privileges are assigned in SQL-92 to authorization ids, which can denote a single

user or a group of users; a user must specify an authorization id and, in many systems,

a corresponding password before the DBMS accepts any commands from him or her.

So, technically, Joe, Michael, and so on are authorization ids rather than user names

in the following examples.

Suppose that user Joe has created the tables Boats, Reserves, and Sailors. Some

examples of the GRANT command that Joe can now execute are listed below:

GRANT INSERT, DELETE ON Reserves TO Yuppy WITH GRANT OPTION

GRANT SELECT ON Reserves TO Michael

GRANT SELECT ON Sailors TO Michael WITH GRANT OPTION

GRANT UPDATE (rating) ON Sailors TO Leah

Security 501

Role-based authorization in SQL: Privileges are assigned to users (autho-

rization ids, to be precise) in SQL-92. In the real world, privileges are often

associated with a user’s job or role within the organization. Many DBMSs have

long supported the concept of a role and allowed privileges to be assigned to

roles. Roles can then be granted to users and other roles. (Of courses, privileges

can also be granted directly to users.) The SQL:1999 standard includes support

for roles. What is the benefit of including a feature that many systems already

support? This ensures that over time, all vendors who comply with the standard

will support this feature. Thus, users can use the feature without worrying about

portability of their application across DBMSs.

GRANT REFERENCES (bid) ON Boats TO Bill

Yuppy can insert or delete Reserves rows and can authorize someone else to do the

same. Michael can execute SELECT queries on Sailors and Reserves, and he can pass

this privilege to others for Sailors, but not for Reserves. With the SELECT privilege,

Michael can create a view that accesses the Sailors and Reserves tables (for example,

the ActiveSailors view) but he cannot grant SELECT on ActiveSailors to others.

On the other hand, suppose that Michael creates the following view:

CREATE VIEW YoungSailors (sid, age, rating)

AS SELECT S.sid, S.age, S.rating

FROM Sailors S

WHERE S.age < 18

The only underlying table is Sailors, for which Michael has SELECT with the grant

option. He therefore has SELECT with the grant option on YoungSailors and can pass

on the SELECT privilege on YoungSailors to Eric and Guppy:

GRANT SELECT ON YoungSailors TO Eric, Guppy

Eric and Guppy can now execute SELECT queries on the view YoungSailors—note,

however, that Eric and Guppy do not have the right to execute SELECT queries directly

on the underlying Sailors table.

Michael can also define constraints based on the information in the Sailors and Reserves

tables. For example, Michael can define the following table, which has an associated

table constraint:

CREATE TABLE Sneaky (maxrating INTEGER,

CHECK (maxrating >=

502 Chapter 17

(SELECT MAX (S.rating)

FROM Sailors S)))

By repeatedly inserting rows with gradually increasing maxrating values into the Sneaky

table until an insertion finally succeeds, Michael can find out the highest rating value

in the Sailors table! This example illustrates why SQL requires the creator of a table

constraint that refers to Sailors to possess the SELECT privilege on Sailors.

Returning to the privileges granted by Joe, Leah can update only the rating column

of Sailors rows. She can execute the following command, which sets all ratings to 8:

UPDATE Sailors S

SET S.rating = 8

However, she cannot execute the same command if the SET clause is changed to be SET

S.age = 25, because she is not allowed to update the age field. A more subtle point is

illustrated by the following command, which decrements the rating of all sailors:

UPDATE Sailors S

SET S.rating = S.rating - 1

Leah cannot execute this command because it requires the SELECT privilege on the

S.rating column and Leah does not have this privilege!

Bill can refer to the bid column of Boats as a foreign key in another table. For example,

Bill can create the Reserves table through the following command:

CREATE TABLE Reserves (sname CHAR(10) NOTNULL,

bid INTEGER,

day DATE,

PRIMARY KEY (bid, day),

UNIQUE (sname),

FOREIGN KEY (bid) REFERENCES Boats)

If Bill did not have the REFERENCES privilege on the bid column of Boats, he would

not be able to execute this CREATE statement because the FOREIGN KEY clause requires

this privilege.

Specifying just the INSERT (similarly, REFERENCES etc.) privilege in a GRANT command

is not the same as specifying SELECT(column-name) for each column currently in the

table. Consider the following command over the Sailors table, which has columns sid,

sname, rating, and age:

GRANT INSERT ON Sailors TO Michael

Security 503

Suppose that this command is executed and then a column is added to the Sailors

table (by executing an ALTER TABLE command). Note that Michael has the INSERT

privilege with respect to the newly added column! If we had executed the following

GRANT command, instead of the previous one, Michael would not have the INSERT

privilege on the new column:

GRANT INSERT ON Sailors(sid), Sailors(sname), Sailors(rating),

Sailors(age), TO Michael

There is a complementary command to GRANT that allows the withdrawal of privileges.

The syntax of the REVOKE command is as follows:

REVOKE [GRANT OPTION FOR] privileges

ON object FROM users { RESTRICT | CASCADE }

The command can be used to revoke either a privilege or just the grant option on a

privilege (by using the optional GRANT OPTION FOR clause). One of the two alterna-

tives, RESTRICT or CASCADE, must be specified; we will see what this choice means

shortly.

The intuition behind the GRANT command is clear: The creator of a base table or a

view is given all the appropriate privileges with respect to it and is allowed to pass

these privileges—including the right to pass along a privilege!—to other users. The

REVOKE command is, as expected, intended to achieve the reverse: A user who has

granted a privilege to another user may change his mind and want to withdraw the

granted privilege. The intuition behind exactly what effect a REVOKE command has is

complicated by the fact that a user may be granted the same privilege multiple times,

possibly by different users.

When a user executes a REVOKE command with the CASCADE keyword, the effect is

to withdraw the named privileges or grant option from all users who currently hold

these privileges solely through a GRANT command that was previously executed by the

same user who is now executing the REVOKE command. If these users received the

privileges with the grant option and passed it along, those recipients will also lose

their privileges as a consequence of the REVOKE command unless they also received

these privileges independently.

We illustrate the REVOKE command through several examples. First, consider what

happens after the following sequence of commands, where Joe is the creator of Sailors.

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)

GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Art)

REVOKE SELECT ON Sailors FROM Art CASCADE (executed by Joe)

504 Chapter 17

Art loses the SELECT privilege on Sailors, of course. Then Bob, who received this

privilege from Art, and only Art, also loses this privilege. Bob’s privilege is said to be

abandoned when the privilege that it was derived from (Art’s SELECT privilege with

grant option, in this example) is revoked. When the CASCADE keyword is specified, all

abandoned privileges are also revoked (possibly causing privileges held by other users

to become abandoned and thereby revoked recursively). If the RESTRICT keyword is

specified in the REVOKE command, the command is rejected if revoking the privileges

just from the users specified in the command would result in other privileges becoming

abandoned.

Consider the following sequence, as another example:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)

GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Joe)

GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Art)

REVOKE SELECT ON Sailors FROM Art CASCADE (executed by Joe)

As before, Art loses the SELECT privilege on Sailors. But what about Bob? Bob

received this privilege from Art, but he also received it independently (coincidentally,

directly from Joe). Thus Bob retains this privilege. Consider a third example:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)

REVOKE SELECT ON Sailors FROM Art CASCADE (executed by Joe)

Since Joe granted the privilege to Art twice and only revoked it once, does Art get

to keep the privilege? As per the SQL-92 standard, no. Even if Joe absentmindedly

granted the same privilege to Art several times, he can revoke it with a single REVOKE

command.

It is possible to revoke just the grant option on a privilege:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)

REVOKE GRANT OPTION FOR SELECT ON Sailors

FROM Art CASCADE (executed by Joe)

This command would leave Art with the SELECT privilege on Sailors, but Art no longer

has the grant option on this privilege and therefore cannot pass it on to other users.

These examples bring out the intuition behind the REVOKE command, but they also

highlight the complex interaction between GRANT and REVOKE commands. When a

GRANT is executed, a privilege descriptor is added to a table of such descriptors

maintained by the DBMS. The privilege descriptor specifies the following: the grantor

of the privilege, the grantee who receives the privilege, the granted privilege (including

Security 505

the name of the object involved), and whether the grant option is included. When

a user creates a table or view and ‘automatically’ gets certain privileges, a privilege

descriptor with system as the grantor is entered into this table.

The effect of a series of GRANT commands can be described in terms of an authoriza-

tion graph in which the nodes are users—technically, they are authorization ids—and

the arcs indicate how privileges are passed. There is an arc from (the node for) user

1 to user 2 if user 1 executed a GRANT command giving a privilege to user 2; the arc

is labeled with the descriptor for the GRANT command. A GRANT command has no ef-

fect if the same privileges have already been granted to the same grantee by the same

grantor. The following sequence of commands illustrates the semantics of GRANT and

REVOKE commands when there is a cycle in the authorization graph:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)

GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Art)

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Bob)

GRANT SELECT ON Sailors TO Cal WITH GRANT OPTION (executed by Joe)

GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Cal)

REVOKE SELECT ON Sailors FROM Art CASCADE (executed by Joe)

The authorization graph for this example is shown in Figure 17.1. Note that we

indicate how Joe, the creator of Sailors, acquired the SELECT privilege from the DBMS

by introducing a System node and drawing an arc from this node to Joe’s node.

Joe Art

BobCal

System

(System, Joe, Select on Sailors, Yes)

(Joe, Cal, Select on Sailors, Yes)

(Art, Bob, Select on Sailors, Yes)

 (Bob, Art, Select on Sailors, Yes)

(Joe, Art, Select on Sailors, Yes)

(Cal, Bob, Select on Sailors, Yes)

Figure 17.1 Example Authorization Graph

As the graph clearly indicates, Bob’s grant to Art and Art’s grant to Bob (of the same

privilege) creates a cycle. Bob is subsequently given the same privilege by Cal, who

received it independently from Joe. At this point Joe decides to revoke the privilege

that he granted to Art.

506 Chapter 17

Let us trace the effect of this revocation. The arc from Joe to Art is removed because

it corresponds to the granting action that is revoked. All remaining nodes have the

following property: If node N has an outgoing arc labeled with a privilege, there is

a path from the System node to node N in which each arc label contains the same

privilege plus the grant option. That is, any remaining granting action is justified by

a privilege received (directly or indirectly) from the System. The execution of Joe’s

REVOKE command therefore stops at this point, with everyone continuing to hold the

SELECT privilege on Sailors.

This result may seem unintuitive because Art continues to have the privilege only

because he received it from Bob, and at the time that Bob granted the privilege to

Art, he had received it only from Art! Although Bob acquired the privilege through

Cal subsequently, shouldn’t the effect of his grant to Art be undone when executing

Joe’s REVOKE command? The effect of the grant from Bob to Art is not undone in

SQL-92. In effect, if a user acquires a privilege multiple times from different grantors,

SQL-92 treats each of these grants to the user as having occurred before that user

passed on the privilege to other users. This implementation of REVOKE is convenient

in many real-world situations. For example, if a manager is fired after passing on some

privileges to subordinates (who may in turn have passed the privileges to others), we

can ensure that only the manager’s privileges are removed by first redoing all of the

manager’s granting actions and then revoking his or her privileges. That is, we need

not recursively redo the subordinates’ granting actions.

To return to the saga of Joe and his friends, let us suppose that Joe decides to revoke

Cal’s SELECT privilege as well. Clearly, the arc from Joe to Cal corresponding to

the grant of this privilege is removed. The arc from Cal to Bob is removed as well,

since there is no longer a path from System to Cal that gives Cal the right to pass

the SELECT privilege on Sailors to Bob. The authorization graph at this intermediate

point is shown in Figure 17.2.

The graph now contains two nodes (Art and Bob) for which there are outgoing arcs

with labels containing the SELECT privilege on Sailors; thus, these users have granted

this privilege. However, although each node contains an incoming arc carrying the same

privilege, there is no such path from System to either of these nodes; thus, these users’

right to grant the privilege has been abandoned. We therefore remove the outgoing

arcs as well. In general, these nodes might have other arcs incident upon them, but

in this example, they now have no incident arcs. Joe is left as the only user with the

SELECT privilege on Sailors; Art and Bob have lost their privileges.

17.3.1 Grant and Revoke on Views and Integrity Constraints *

The privileges held by the creator of a view (with respect to the view) change over

time as he or she gains or loses privileges on the underlying tables. If the creator loses

Security 507

Joe Art

BobCal

System

(Art, Bob, Select on Sailors, Yes)

 (Bob, Art, Select on Sailors, Yes)

(System, Joe, Select on Sailors, Yes)

Figure 17.2 Example Authorization Graph during Revocation

a privilege held with the grant option, users who were given that privilege on the view

will lose it as well. There are some subtle aspects to the GRANT and REVOKE commands

when they involve views or integrity constraints. We will consider some examples that

highlight the following important points:

1. A view may be dropped because a SELECT privilege is revoked from the user who

created the view.

2. If the creator of a view gains additional privileges on the underlying tables, he or

she automatically gains additional privileges on the view.

3. The distinction between the REFERENCES and SELECT privileges is important.

Suppose that Joe created Sailors and gave Michael the SELECT privilege on it with

the grant option, and Michael then created the view YoungSailors and gave Eric the

SELECT privilege on YoungSailors. Eric now defines a view called FineYoungSailors:

CREATE VIEW FineYoungSailors (name, age, rating)

AS SELECT S.sname, S.age, S.rating

FROM YoungSailors S

WHERE S.rating > 6

What happens if Joe revokes the SELECT privilege on Sailors from Michael? Michael

no longer has the authority to execute the query used to define YoungSailors because

the definition refers to Sailors. Therefore, the view YoungSailors is dropped (i.e.,

destroyed). In turn, FineYoungSailors is dropped as well. Both these view definitions

are removed from the system catalogs; even if a remorseful Joe decides to give back

508 Chapter 17

the SELECT privilege on Sailors to Michael, the views are gone and must be created

afresh if they are required.

On a more happy note, suppose that everything proceeds as described above un-

til Eric defines FineYoungSailors; then, instead of revoking the SELECT privilege on

Sailors from Michael, Joe decides to also give Michael the INSERT privilege on Sailors.

Michael’s privileges on the view YoungSailors are upgraded to what he would have if

he were to create the view now. Thus he acquires the INSERT privilege on Young-

Sailors as well. (Note that this view is updatable.) What about Eric? His privileges

are unchanged.

Whether or not Michael has the INSERT privilege on YoungSailors with the grant

option depends on whether or not Joe gives him the INSERT privilege on Sailors with

the grant option. To understand this situation, consider Eric again. If Michael has the

INSERT privilege on YoungSailors with the grant option, he can pass this privilege to

Eric. Eric could then insert rows into the Sailors table because inserts on YoungSailors

are effected by modifying the underlying base table, Sailors. Clearly, we don’t want

Michael to be able to authorize Eric to make such changes unless Michael has the

INSERT privilege on Sailors with the grant option.

The REFERENCES privilege is very different from the SELECT privilege, as the following

example illustrates. Suppose that Joe is the creator of Boats. He can authorize another

user, say Fred, to create Reserves with a foreign key that refers to the bid column of

Boats by giving Fred the REFERENCES privilege with respect to this column. On the

other hand, if Fred has the SELECT privilege on the bid column of Boats but not the

REFERENCES privilege, Fred cannot create Reserves with a foreign key that refers to

Boats. If Fred creates Reserves with a foreign key column that refers to bid in Boats,

and later loses the REFERENCES privilege on the bid column of boats, the foreign key

constraint in Reserves is dropped; however, the Reserves table is not dropped.

To understand why the SQL-92 standard chose to introduce the REFERENCES privilege,

rather than to simply allow the SELECT privilege to be used in this situation, consider

what happens if the definition of Reserves specified the NO ACTION option with the

foreign key—Joe, the owner of Boats, may be prevented from deleting a row from

Boats because a row in Reserves refers to this Boats row! Giving Fred, the creator

of Reserves, the right to constrain updates on Boats in this manner goes beyond

simply allowing him to read the values in Boats, which is all that the SELECT privilege

authorizes.

17.4 MANDATORY ACCESS CONTROL *

Discretionary access control mechanisms, while generally effective, have certain weak-

nesses. In particular they are susceptible to Trojan horse schemes whereby a devious

Security 509

unauthorized user can trick an authorized user into disclosing sensitive data. For exam-

ple, suppose that student Tricky Dick wants to break into the grade tables of instructor

Trustin Justin. Dick does the following:

He creates a new table called MineAllMine and gives INSERT privileges on this

table to Justin (who is blissfully unaware of all this attention, of course).

He modifies the code of some DBMS application that Justin uses often to do a

couple of additional things: first, read the Grades table, and next, write the result

into MineAllMine.

Then he sits back and waits for the grades to be copied into MineAllMine and later

undoes the modifications to the application to ensure that Justin does not somehow find

out later that he has been cheated. Thus, despite the DBMS enforcing all discretionary

access controls—only Justin’s authorized code was allowed to access Grades—sensitive

data is disclosed to an intruder. The fact that Dick could surreptitiously modify

Justin’s code is outside the scope of the DBMS’s access control mechanism.

Mandatory access control mechanisms are aimed at addressing such loopholes in dis-

cretionary access control. The popular model for mandatory access control, called

the Bell-LaPadula model, is described in terms of objects (e.g., tables, views, rows,

columns), subjects (e.g., users, programs), security classes, and clearances. Each

database object is assigned a security class, and each subject is assigned clearance for

a security class; we will denote the class of an object or subject A as class(A). The

security classes in a system are organized according to a partial order, with a most

secure class and a least secure class. For simplicity, we will assume that there are

four classes: top secret (TS), secret (S), confidential (C), and unclassified (U). In this

system, TS > S > C > U, where A > B means that class A data is more sensitive than

class B data.

The Bell-LaPadula model imposes two restrictions on all reads and writes of database

objects:

1. Simple Security Property: Subject S is allowed to read object O only if class(S)

≥ class(O). For example, a user with TS clearance can read a table with C clear-

ance, but a user with C clearance is not allowed to read a table with TS classifi-

cation.

2. *-Property: Subject S is allowed to write object O only if class(S) ≤ class(O). For

example, a user with S clearance can only write objects with S or TS classification.

If discretionary access controls are also specified, these rules represent additional re-

strictions. Thus, to read or write a database object, a user must have the necessary

privileges (obtained via GRANT commands) and the security classes of the user and the

object must satisfy the preceding restrictions. Let us consider how such a mandatory

510 Chapter 17

control mechanism might have foiled Tricky Dick. The Grades table could be clas-

sified as S, Justin could be given clearance for S, and Tricky Dick could be given a

lower clearance (C). Dick can only create objects of C or lower classification; thus,

the table MineAllMine can have at most the classification C. When the application

program running on behalf of Justin (and therefore with clearance S) tries to copy

Grades into MineAllMine, it is not allowed to do so because class(MineAllMine) <

class(application), and the *-Property is violated.

17.4.1 Multilevel Relations and Polyinstantiation

To apply mandatory access control policies in a relational DBMS, a security class must

be assigned to each database object. The objects can be at the granularity of tables,

rows, or even individual column values. Let us assume that each row is assigned a

security class. This situation leads to the concept of a multilevel table, which is a

table with the surprising property that users with different security clearances will see

a different collection of rows when they access the same table.

Consider the instance of the Boats table shown in Figure 17.3. Users with S and TS

clearance will get both rows in the answer when they ask to see all rows in Boats. A

user with C clearance will get only the second row, and a user with U clearance will

get no rows.

bid bname color Security Class

101 Salsa Red S

102 Pinto Brown C

Figure 17.3 An Instance B1 of Boats

The Boats table is defined to have bid as the primary key. Suppose that a user with

clearance C wishes to enter the row 〈101,Picante,Scarlet,C〉. We have a dilemma:

If the insertion is permitted, two distinct rows in the table will have key 101.

If the insertion is not permitted because the primary key constraint is violated,

the user trying to insert the new row, who has clearance C, can infer that there is

a boat with bid=101 whose security class is higher than C. This situation compro-

mises the principle that users should not be able to infer any information about

objects that have a higher security classification.

This dilemma is resolved by effectively treating the security classification as part of

the key. Thus, the insertion is allowed to continue, and the table instance is modified

as shown in Figure 17.4.

Security 511

bid bname color Security Class

101 Salsa Red S

101 Picante Scarlet C

102 Pinto Brown C

Figure 17.4 Instance B1 after Insertion

Users with clearance C or U see just the rows for Picante and Pinto, but users with

clearance S or TS see all three rows. The two rows with bid=101 can be interpreted in

one of two ways: only the row with the higher classification (Salsa, with classification

S) actually exists, or both exist and their presence is revealed to users according to

their clearance level. The choice of interpretation is up to application developers and

users.

The presence of data objects that appear to have different values to users with differ-

ent clearances (for example, the boat with bid 101) is called polyinstantiation. If

we consider security classifications associated with individual columns, the intuition

underlying polyinstantiation can be generalized in a straightforward manner, but some

additional details must be addressed. We remark that the main drawback of manda-

tory access control schemes is their rigidity; policies are set by system administrators,

and the classification mechanisms are not flexible enough. A satisfactory combination

of discretionary and mandatory access controls is yet to be achieved.

17.4.2 Covert Channels, DoD Security Levels

Even if a DBMS enforces the mandatory access control scheme discussed above, infor-

mation can flow from a higher classification level to a lower classification level through

indirect means, called covert channels. For example, if a transaction accesses data

at more than one site in a distributed DBMS, the actions at the two sites must be

coordinated. The process at one site may have a lower clearance (say C) than the

process at another site (say S), and both processes have to agree to commit before the

transaction can be committed. This requirement can be exploited to pass information

with an S classification to the process with a C clearance: The transaction is repeat-

edly invoked, and the process with the C clearance always agrees to commit, whereas

the process with the S clearance agrees to commit if it wants to transmit a 1 bit and

does not agree if it wants to transmit a 0 bit.

In this (admittedly tortuous) manner, information with an S clearance can be sent to

a process with a C clearance as a stream of bits. This covert channel is an indirect

violation of the intent behind the *-Property. Additional examples of covert channels

can be found readily in statistical databases, which we discuss in Section 17.5.2.

512 Chapter 17

Current systems: Commercial RDBMSs are available that support discre-

tionary controls at the C2 level and mandatory controls at the B1 level. IBM

DB2, Informix, Microsoft SQL Server, Oracle 8, and Sybase ASE all support

SQL-92’s features for discretionary access control. In general, they do not sup-

port mandatory access control; Oracle does offer a version of their product with

support for mandatory access control.

DBMS vendors have recently started implementing mandatory access control mecha-

nisms (although they are not part of the SQL-92 standard) because the United States

Department of Defense (DoD) requires such support for its systems. The DoD require-

ments can be described in terms of security levels A, B, C, and D of which A is the

most secure and D is the least secure.

Level C requires support for discretionary access control. It is divided into sublevels

C1 and C2; C2 also requires some degree of accountability through procedures such

as login verification and audit trails. Level B requires support for mandatory access

control. It is subdivided into levels B1, B2, and B3. Level B2 additionally requires

the identification and elimination of covert channels. Level B3 additionally requires

maintenance of audit trails and the designation of a security administrator (usually,

but not necessarily, the DBA). Level A, the most secure level, requires a mathematical

proof that the security mechanism enforces the security policy!

17.5 ADDITIONAL ISSUES RELATED TO SECURITY *

Security is a broad topic, and our coverage is necessarily limited. This section briefly

touches on some additional important issues.

17.5.1 Role of the Database Administrator

The database administrator (DBA) plays an important role in enforcing the security-

related aspects of a database design. In conjunction with the owners of the data, the

DBA will probably also contribute to developing a security policy. The DBA has a

special account, which we will call the system account, and is responsible for the

overall security of the system. In particular the DBA deals with the following:

1. Creating new accounts: Each new user or group of users must be assigned an

authorization id and a password. Note that application programs that access the

database have the same authorization id as the user executing the program.

2. Mandatory control issues: If the DBMS supports mandatory control—some

customized systems for applications with very high security requirements (for

Security 513

example, military data) provide such support—the DBA must assign security

classes to each database object and assign security clearances to each authorization

id in accordance with the chosen security policy.

The DBA is also responsible for maintaining the audit trail, which is essentially the

log of updates with the authorization id (of the user who is executing the transaction)

added to each log entry. This log is just a minor extension of the log mechanism

used to recover from crashes. Additionally, the DBA may choose to maintain a log

of all actions, including reads, performed by a user. Analyzing such histories of how

the DBMS was accessed can help prevent security violations by identifying suspicious

patterns before an intruder finally succeeds in breaking in, or it can help track down

an intruder after a violation has been detected.

17.5.2 Security in Statistical Databases

A statistical database is one that contains specific information on individuals or

events but is intended to permit only statistical queries. For example, if we maintained

a statistical database of information about sailors, we would allow statistical queries

about average ratings, maximum age, and so on, but would not want to allow queries

about individual sailors. Security in such databases poses some new problems because

it is possible to infer protected information (such as an individual sailor’s rating) from

answers to permitted statistical queries. Such inference opportunities represent covert

channels that can compromise the security policy of the database.

Suppose that sailor Sneaky Pete wants to know the rating of Admiral Horntooter, the

esteemed chairman of the sailing club, and happens to know that Horntooter is the

oldest sailor in the club. Pete repeatedly asks queries of the form “How many sailors

are there whose age is greater than X?” for various values of X, until the answer is 1.

Obviously, this sailor is Horntooter, the oldest sailor. Note that each of these queries

is a valid statistical query and is permitted. Let the value of X at this point be, say,

65. Pete now asks the query, “What is the maximum rating of all sailors whose age

is greater than 65?” Again, this query is permitted because it is a statistical query.

However, the answer to this query reveals Horntooter’s rating to Pete, and the security

policy of the database is violated.

One approach to preventing such violations is to require that each query must involve

at least some minimum number, say N, of rows. With a reasonable choice of N, Pete

would not be able to isolate the information about Horntooter, because the query

about the maximum rating would fail. This restriction, however, is easy to overcome.

By repeatedly asking queries of the form, “How many sailors are there whose age is

greater than X?” until the system rejects one such query, Pete identifies a set of N

sailors, including Horntooter. Let the value of X at this point be 55. Now, Pete can

ask two queries:

514 Chapter 17

“What is the sum of the ratings of all sailors whose age is greater than 55?” Since

N sailors have age greater than 55, this query is permitted.

“What is the sum of the ratings of all sailors, other than Horntooter, whose age

is greater than 55, and sailor Pete?” Since the set of sailors whose ratings are

added up now includes Pete instead of Horntooter, but is otherwise the same, the

number of sailors involved is still N, and this query is also permitted.

From the answers to these two queries, say A1 and A2, Pete, who knows his rating,

can easily calculate Horntooter’s rating as A1 − A2 + Pete’s rating.

Pete succeeded because he was able to ask two queries that involved many of the

same sailors. The number of rows examined in common by two queries is called their

intersection. If a limit were to be placed on the amount of intersection permitted

between any two queries issued by the same user, Pete could be foiled. Actually,

a truly fiendish (and patient) user can generally find out information about specific

individuals even if the system places a minimum number of rows bound (N) and a

maximum intersection bound (M) on queries, but the number of queries required to do

this grows in proportion to N/M . We can try to additionally limit the total number of

queries that a user is allowed to ask, but two users could still conspire to breach security.

By maintaining a log of all activity (including read-only accesses), such query patterns

can be detected, hopefully before a security violation occurs. This discussion should

make it clear, however, that security in statistical databases is difficult to enforce.

17.5.3 Encryption

A DBMS can use encryption to protect information in certain situations where the

normal security mechanisms of the DBMS are not adequate. For example, an intruder

may steal tapes containing some data or tap a communication line. By storing and

transmitting data in an encrypted form, the DBMS ensures that such stolen data is

not intelligible to the intruder.

The basic idea behind encryption is to apply an encryption algorithm, which may

be accessible to the intruder, to the original data and a user-specified or DBA-specified

encryption key, which is kept secret. The output of the algorithm is the encrypted

version of the data. There is also a decryption algorithm, which takes the encrypted

data and the encryption key as input and then returns the original data. Without the

correct encryption key, the decryption algorithm produces gibberish. This approach

forms the basis for the Data Encryption Standard (DES), which has been in use

since 1977, with an encryption algorithm that consists of character substitutions and

permutations. The main weakness of this approach is that authorized users must be

told the encryption key, and the mechanism for communicating this information is

vulnerable to clever intruders.

Security 515

Another approach to encryption, called public-key encryption, has become increas-

ingly popular in recent years. The encryption scheme proposed by Rivest, Shamir,

and Adleman, called RSA, is a well-known example of public-key encryption. Each

authorized user has a public encryption key, known to everyone, and a private

decryption key (used by the decryption algorithm), chosen by the user and known

only to him or her. The encryption and decryption algorithms themselves are assumed

to be publicly known. Consider a user called Sam. Anyone can send Sam a secret

message by encrypting the message using Sam’s publicly known encryption key. Only

Sam can decrypt this secret message because the decryption algorithm requires Sam’s

decryption key, known only to Sam. Since users choose their own decryption keys, the

weakness of DES is avoided.

The main issue for public-key encryption is how encryption and decryption keys are

chosen. Technically, public-key encryption algorithms rely on the existence of one-

way functions, which are functions whose inverse is computationally very hard to

determine. The RSA algorithm, for example, is based on the observation that although

checking whether a given number is prime is easy, determining the prime factors of a

nonprime number is extremely hard. (Determining the prime factors of a number with

over 100 digits can take years of CPU-time on the fastest available computers today.)

We now sketch the intuition behind the RSA algorithm, assuming that the data to be

encrypted is an integer I. To choose an encryption key and a decryption key, our friend

Sam would first choose a very large integer limit, which we assume is larger than the

largest integer that he will ever need to encode. Sam chooses limit to be the product of

two (large!) distinct prime numbers, say p ∗ q. Sam then chooses some prime number

e, chosen to be larger than both p and q, as his encryption key. Both limit and e are

made public and are used by the encryption algorithm.

Now comes the clever part: Sam chooses the decryption key d in a special way based

on p, q, and e.1 The essential point of the scheme is that it is easy to compute d

given e, p, and q, but very hard to compute d given just e and limit. In turn, this

difficulty depends on the fact that it is hard to determine the prime factors of limit,

which happen to be p and q.

A very important property of the encryption and decryption algorithms in this scheme

is that given the corresponding encryption and decryption keys, the algorithms are

inverses of each other—not only can data be encrypted and then decrypted, but we

can also apply the decryption algorithm first and then the encryption algorithm and

still get the original data back! This property can be exploited by two users, say Elmer

and Sam, to exchange messages in such a way that if Elmer gets a message that is

supposedly from Sam, he can verify that it is from Sam (in addition to being able to

decrypt the message), and further, prove that it is from Sam. This feature has obvious

1In case you are curious, d is chosen such that d ∗ e = 1 mod ((p − 1) ∗ (q − 1)).

516 Chapter 17

practical value. For example, suppose that Elmer’s company accepts orders for its

products over the Internet and stores these orders in a DBMS. The requirements are:

1. Only the company (Elmer) should be able to understand an order. A customer

(say Sam) who orders jewelry frequently may want to keep the orders private

(perhaps because he does not want to become a popular attraction for burglars!).

2. The company should be able to verify that an order that supposedly was placed

by customer Sam was indeed placed by Sam, and not by an intruder claiming to

be Sam. By the same token, Sam should not be able to claim that the company

forged an order from him—an order from Sam must provably come from Sam.

The company asks each customer to choose an encryption key (Sam chooses eSam)

and a decryption key (dSam) and to make the encryption key public. It also makes its

own encryption key (eElmer) public. The company’s decryption key (dElmer) is kept

secret, and customers are expected to keep their decryption keys secret as well.

Now let’s see how the two requirements can be met. To place an order, Sam could just

encrypt the order using encryption key eElmer, and Elmer could decrypt this using

decryption key dElmer. This simple approach satisfies the first requirement because

dElmer is known only to Elmer. However, since eElmer is known to everyone, someone

who wishes to play a prank could easily place an order on behalf of Sam without

informing Sam. From the order itself, there is no way for Elmer to verify that it came

from Sam. (Of course, one way to handle this is to give each customer an account and

to rely on the login procedure to verify the identity of the user placing the order—the

user would have to know the password for Sam’s account—but the company may have

thousands of customers and may not want to give each of them an account.)

A clever use of the encryption scheme, however, allows Elmer to verify whether the

order was indeed placed by Sam. Instead of encrypting the order using eElmer, Sam

first applies his decryption algorithm, using dSam, known only to Sam (and not even to

Elmer!), to the original order. Since the order was not encrypted first, this produces

gibberish, but as we shall see, there is a method in this madness. Next, Sam encrypts

the result of the previous step using eElmer and registers the result in the database.

When Elmer examines such an order, he first decrypts it using dElmer. This step

yields the gibberish that Sam generated from his order, because the encryption and

decryption algorithm are inverses when applied with the right keys. Next, Elmer

applies the encryption algorithm to this gibberish, using Sam’s encryption key eSam,

which is known to Elmer (and is public). This step yields the original unencrypted

order, again because the encryption and decryption algorithm are inverses!

If the order had been forged, the forger could not have known Sam’s decryption key

dSam; the final result would have been nonsensical, rather than the original order.

Security 517

Further, because the company does not know dSam, Sam cannot claim that a genuine

order was forged by the company.

The use of public-key cryptography is not limited to database systems, but it is likely

to find increasing application in the DBMS context thanks to the use of the DBMS as

a repository for the records of sensitive commercial transactions. Internet commerce,

as in the example above, could be a driving force in this respect.

17.6 POINTS TO REVIEW

There are three main security objectives. First, information should not be dis-

closed to unauthorized users (secrecy). Second, only authorized users should be

allowed to modify data (integrity). Third, authorized users should not be denied

access (availability). A security policy describes the security measures enforced.

These measures use the security mechanisms of the underlying DBMS. (Sec-

tion 17.1)

There are two main approaches to enforcing security measures. In discretionary

access control, users have privileges to access or modify objects in the database.

If they have permission, users can grant their privileges to other users, and the

DBMS keeps track of who has what rights. In mandatory access control, objects

are assigned security classes. Users have security clearance for a security class.

Rules involving the security class and a user’s clearance determine which database

objects the user can access. (Section 17.2)

SQL supports discretionary access through the GRANT and REVOKE commands.

The creator of a table has automatically all privileges on it and can pass privi-

leges on to other users or revoke privileges from other users. The effect of GRANT

commands can be described as adding edges into an authorization graph and the

effect of REVOKE commands can be described as removing edges from the graph.

(Section 17.3)

In mandatory access control, objects are organized into several security classes

and users are organized into several levels of clearance. The security classes form

a partial order. Reads and writes of an object are restricted by rules that involve

the security class of the object and the clearance of the user. Users with different

levels of clearance might see different records in the same table. This phenomenon

is called polyinstantiation. (Section 17.4)

The database administrator is responsible for the overall security of the system.

The DBA has a system account with special privileges. The DBA also maintains

an audit trail, a log of accesses to the DBMS with the corresponding user identi-

fiers. Statistical databases only allow summary queries, but clever users can infer

information about specific individuals from the answers to valid statistical queries.

518 Chapter 17

We can use encryption techniques to ensure that stolen data cannot be deciphered.

(Section 17.5)

EXERCISES

Exercise 17.1 Briefly answer the following questions based on this schema:

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, budget: real, managerid: integer)

1. Suppose you have a view SeniorEmp defined as follows:

CREATE VIEW SeniorEmp (sname, sage, salary)

AS SELECT E.ename, E.age, E.salary

FROM Emp E

WHERE E.age > 50

Explain what the system will do to process the following query:

SELECT S.sname

FROM SeniorEmp S

WHERE S.salary > 100,000

2. Give an example of a view on Emp that could be automatically updated by updating

Emp.

3. Give an example of a view on Emp that would be impossible to update (automatically)

and explain why your example presents the update problem that it does.

4. Consider the following view definition:

CREATE VIEW DInfo (did, manager, numemps, totsals)

AS SELECT D.did, D.managerid, COUNT (*), SUM (E.salary)

FROM Emp E, Works W, Dept D

WHERE E.eid = W.eid AND W.did = D.did

GROUP BY D.did, D.managerid

(a) Give an example of a view update on DInfo that could (in principle) be implemented

automatically by updating one or more of the relations Emp, Works, and Dept.

Does SQL-92 allow such a view update?

(b) Give an example of a view update on DInfo that cannot (even in principle) be

implemented automatically by updating one or more of the relations Emp, Works,

and Dept. Explain why.

(c) How could the view DInfo help in enforcing security?

Exercise 17.2 You are the DBA for the VeryFine Toy Company, and you create a relation

called Employees with fields ename, dept, and salary. For authorization reasons, you also

define views EmployeeNames (with ename as the only attribute) and DeptInfo with fields

dept and avgsalary. The latter lists the average salary for each department.

Security 519

1. Show the view definition statements for EmployeeNames and DeptInfo.

2. What privileges should be granted to a user who needs to know only average department

salaries for the Toy and CS departments?

3. You want to authorize your secretary to fire people (you’ll probably tell him whom to

fire, but you want to be able to delegate this task), to check on who is an employee, and

to check on average department salaries. What privileges should you grant?

4. Continuing with the preceding scenario, you don’t want your secretary to be able to look

at the salaries of individuals. Does your answer to the previous question ensure this?

Be specific: Can your secretary possibly find out salaries of some individuals (depending

on the actual set of tuples), or can your secretary always find out the salary of any

individual that he wants to?

5. You want to give your secretary the authority to allow other people to read the Employ-

eeNames view. Show the appropriate command.

6. Your secretary defines two new views using the EmployeeNames view. The first is called

AtoRNames and simply selects names that begin with a letter in the range A to R. The

second is called HowManyNames and counts the number of names. You are so pleased

with this achievement that you decide to give your secretary the right to insert tuples into

the EmployeeNames view. Show the appropriate command, and describe what privileges

your secretary has after this command is executed.

7. Your secretary allows Todd to read the EmployeeNames relation and later quits. You

then revoke the secretary’s privileges. What happens to Todd’s privileges?

8. Give an example of a view update on the above schema that cannot be implemented

through updates to Employees.

9. You decide to go on an extended vacation, and to make sure that emergencies can be

handled, you want to authorize your boss Joe to read and modify the Employees relation

and the EmployeeNames relation (and Joe must be able to delegate authority, of course,

since he’s too far up the management hierarchy to actually do any work). Show the

appropriate SQL statements. Can Joe read the DeptInfo view?

10. After returning from your (wonderful) vacation, you see a note from Joe, indicating that

he authorized his secretary Mike to read the Employees relation. You want to revoke

Mike’s SELECT privilege on Employees, but you don’t want to revoke the rights that you

gave to Joe, even temporarily. Can you do this in SQL?

11. Later you realize that Joe has been quite busy. He has defined a view called AllNames

using the view EmployeeNames, defined another relation called StaffNames that he has

access to (but that you can’t access), and given his secretary Mike the right to read from

the AllNames view. Mike has passed this right on to his friend Susan. You decide that

even at the cost of annoying Joe by revoking some of his privileges, you simply have

to take away Mike and Susan’s rights to see your data. What REVOKE statement would

you execute? What rights does Joe have on Employees after this statement is executed?

What views are dropped as a consequence?

Exercise 17.3 Briefly answer the following questions.

1. Explain the intuition behind the two rules in the Bell-LaPadula model for mandatory

access control.

520 Chapter 17

2. Give an example of how covert channels can be used to defeat the Bell-LaPadula model.

3. Give an example of polyinstantiation.

4. Describe a scenario in which mandatory access controls prevent a breach of security that

cannot be prevented through discretionary controls.

5. Describe a scenario in which discretionary access controls are required to enforce a secu-

rity policy that cannot be enforced using only mandatory controls.

6. If a DBMS already supports discretionary and mandatory access controls, is there a need

for encryption?

7. Explain the need for each of the following limits in a statistical database system:

(a) A maximum on the number of queries a user can pose.

(b) A minimum on the number of tuples involved in answering a query.

(c) A maximum on the intersection of two queries (i.e., on the number of tuples that

both queries examine).

8. Explain the use of an audit trail, with special reference to a statistical database system.

9. What is the role of the DBA with respect to security?

10. What is public-key encryption? How does it differ from the encryption approach taken

in the Data Encryption Standard (DES), and in what ways is it better than DES?

11. What are one-way functions, and what role do they play in public-key encryption?

12. Explain how a company offering services on the Internet could use public-key encryption

to make its order-entry process secure. Describe how you would use DES encryption for

the same purpose, and contrast the public-key and DES approaches.

PROJECT-BASED EXERCISES

Exercise 17.4 Is there any support for views or authorization in Minibase?

BIBLIOGRAPHIC NOTES

The authorization mechanism of System R, which greatly influenced the GRANT and REVOKE

paradigm in SQL-92, is described in [290]. A good general treatment of security and cryptog-

raphy is presented in [179], and an overview of database security can be found in [119] and

[404]. Security in statistical databases is investigated in several papers, including [178] and

[148]. Multilevel security is discussed in several papers, including [348, 434, 605, 621].

